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Sentiment Analysis
• Is a given piece of text positive, negative, or neutral?

– The text may be a sentence, a tweet, an SMS message, a 

customer review, a document, and so on.
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Emotion Analysis
• What emotion is being expressed in a given piece of text?

– Basic emotions: joy, sadness, fear, anger,…

– Other emotions: guilt, pride, optimism, frustration,…

Slide adapted from [13]
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Emotion Analysis
• What emotion is being expressed in a given piece of text?

– Basic emotions: joy, sadness, fear, anger,…

– Other emotions: guilt, pride, optimism, frustration,…

Not in the scope of this 
tutorial

Slide adapted from [13]



Sentiment Analysis: Domains
• News

• Legal

• Novels

• E-mails

• SMS

• Customer reviews

• Blog posts

• Tweets

• Facebook posts

• …
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Short informal text – collectively called Social 
Media texts

Formal text



How Social Media text is 

different?
• Informal

• Short

– 140 characters for tweets

• Abbreviations and shortenings

• Wide array of topics and large vocabulary

• Spelling mistakes and creative spellings

• Special strings
– hashtags, emoticons, conjoined words

• High volume
– 500 million tweets posted every day

• Often come with meta-information
– date, links, likes, location

• Often express sentiment
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Outline
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• APIs

• Python -
Tweepy

Pre-
processing

Models



Data Collection (Twitter)
• Twitter provides public APIs

– https://dev.twitter.com/rest/public

• Register your app

– https://apps.twitter.com/

• Obtain authentication key
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https://dev.twitter.com/rest/public
https://apps.twitter.com/


Using Twitter APIs in Python
• Twitter provides REST APIs

• Install tweepy1

– pip install tweepy

• Setup OAuth interface2

7/20/2017 8

2 https://marcobonzanini.com/2015/03/02/mining-twitter-data-with-python-part-1/

1 http://docs.tweepy.org



Using Twitter APIs in Python: 

Streaming
• Setup stream of tweets based on filters1

• Makes all the tweets available in json format in python.json file

– Filtered with #python hashtag

– To use multiple filters append them in the track array
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1 https://marcobonzanini.com/2015/03/02/mining-twitter-data-with-python-part-1/



Outline
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Models



Pre-processing Social Media Text

• Social Media Text is noisy

– Informal e.g., slangs

– Misspellings e.g., covfefe

– Elongated words e.g., can’t waittt

– Hashtags e.g., #wesst2017

– Emoticons e.g.,  

– Urls

– Random capitalization e.g., NOT COOL!

– …

• Word coverage with standard dictionaries can be low (50-70%)
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Pre-processing: Hashtags
• Hashtagged words are good labels of sentiments and emotions

– Can’t wait to have my own Google glasses #awesome

– Some jerk just stole my photo on #tumblr. #grr #anger 

• Hashtag Sentiment Lexicon

– created from a large collection of hashtagged tweets

– has entries for ~215,000 unigrams

• New hashtags are being generated every minute

• Breaking long hashtags into smaller instances [1]

– #killthebill kill the bill
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Pre-processing: Normalization

• Remove patterns like ’RT’, ’@user name’, url

• Rectify informal/misspelled words using normalization dictionary [2]

– “foundation”  “foudation”

– “forgot”  “forgt”

• Expand abbreviations using slang dictionary1

• Removing emoticons

• Handling negation [3]

– Presence of ‘not’ can negate the target polarity
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1 Slang Dictionary - Text Slang & Internet Slang Words. http://www.noslang.com/dictionary/



Outline
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Rule Based Models
• Lexicalized hand-written rules: 

– Each rule is a pattern that matches words or sequences of words

– Used in Teragram [4]

• Background data: use blogs, forums, news, and tweets to develop 

the rules

• Advantages: 

– explicit knowledge representation, so intuitive to develop and 

maintain. 

• Disadvantages:

– Coverage: often limited coverage  low recall

– Extensibility: poor for new data/domains
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Knowledge acquired by applying rules 
can often be translated as features 

into statistical approaches



Conventional Machine Learning

Features Examples

N-grams happy, am_very_happy, am_*_happy 

Char n-grams un, unh, unha, unhap

Emoticons :D, >:( 

hashtags #excited, #NowPlaying

capitalizations YES, COOL 

Part of Speech N: 5, V: 2, A:1 

Negation Neg:1 
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• Standard Features

• Augmented Features [1]
• Sentiment of the content of the associated URL, words from hashtags

• Classifier:
• Linear SVM, Multinomial Naïve Bayes



Deep Learning Based Models
• General Word Embedding: representation of lexical items as points 

in a real-valued (low-dimensional) vector space.

• It is often computed by compressing a larger matrix to smaller one.
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Keep (semantically or syntactically) close items in the
original matrix/space to be close in the embedding space. 



Deep Learning Based Models
• General Word Embedding: representation of lexical items as points 

in a real-valued (low-dimensional) vector space.

• It is often computed by compressing a larger matrix to smaller one.

7/20/2017 19

Keep (semantically or syntactically) close items in the
original matrix/space to be close in the embedding space. 



Sentiment Composition

• In addition to obtaining sentiment embedding, composing word 

sentiment to analyze larger pieces of text (e.g., sentences) is 

another important problem. 

• Most work we have discussed so far is based on bag-of-words or

bag-of-ngrams assumption.

• More principled models…

– Convolution, LSTM in general
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Sentiment Composition: Illustration

• Socher et al. (2013) proposed a recursive neural network to 

compose sentiment of a sentence [14].
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Sentiment Composition: Training

• Tensors are critical in capturing interaction between two 

words/phrases being composed (e.g., a negator and the phrase it 

modifies.)
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• Standard forward/backward propagation was adapted to learn the 
weights/parameters



Variations of Sentiment Analysis 

&

Emerging Research
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Opinion Mining
• What is an Opinion?

• An opinion is a quintuple 

(oj, fjk, soijkl, hi, tl)

– oj is a target object.

– fjk is a feature of the object oj.

– soijkl is the sentiment value of the opinion of the opinion holder hi on feature fjk of 

object oj at time tl. soijkl is +ve, -ve, or neu, or a more granular rating. 

– hi is an opinion holder. 

– tl is the time when the opinion is expressed

• Objective: Given an opinionated document, 

– Discover all quintuples (oj, fjk, soijkl, hi, tl), 

• i.e., mine the five corresponding pieces of information in each 
quintuple, and
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Slide adapted from:Opinion Mining and Sentiment Analysis: NLP Meets 

Social Sciences By Bing Liu



Aspect Based Sentiment Analysis

• Determine the polarity (positive, negative, neutral, or conflict) of 

each aspect category discussed in a given sentence extracted from 

a restaurant review 

“To be completely fair, the only redeeming factor was the food, 

which was above average, but couldn't make up for all the other 

deficiencies of Teodora.”

• Aspect categories: food (positive), miscellaneous (negative)
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Aspect Based Sentiment: Models

• Standard features for Supervised Models

– ngrams, character ngrams

– word cluster ngrams

– sentiment lexicon features

– Negation

• Task-specific features

– find terms associated with a given aspect category using Yelp Restaurant Word –

Aspect Association Lexicon

– Add standard features generated just for those terms

• Unsupervised methods use topic models [5]

– Seed words to initialize the polarity classes

• Deep Learning based models [9]
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“The pizza was delicious, but the waiter was rude”

food Service



Sentiment Analysis in Health Forums

• Emerging direction of research on Consumer Health Forums

– Users share their clinical experience with others in the community1

• Critical for well being of patients with mental issues e.g., depression, 

Anxiety

• Mental Health Forums are getting popular2

– Provides a platform for emotional support from others in the community

• Sentiment Analysis in Mental Health Forums

– Can detect early symptoms of depression[7]

– Track a patients emotional state over time[6]

– Can help us prevent life-threatening situations

• Standard Features for Depression Detection

– Increased negativity in user posts

– Withdrawal from Social interactions
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2 www.dailystrength.org
1 www.patientslikeme.com, www.healthboards.com

http://www.patientslikeme.com/


Summary
• Social Media Text varies widely from formal domain

– Text normalization, cleaning is necessary for traditional lexical 

dictionary to work

• Discussed ways to collect Social Media Data (e.g., twitter)

• Discussed features for state-of-the-art models

– Conventional Machine Learning, Deep Learning

• Variations of Sentiment Analysis

– Opinion Mining, Aspect Based Sentiment Analysis

• Implication of sentiment analysis on Health Forums and emerging 

research directions
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Thanks for listening!
Questions?

Email: kishaloy@comp.nus.edu.sg
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